FEATURES:

- 64×9-bit organization (IDT72421)
- 256×9-bit organization (IDT72201)
- 512×9-bit organization (IDT72211)
- $1,024 \times 9$-bit organization (IDT72221)
- 2,048 x 9-bit organization (IDT72231)
- 4,096 x 9-bit organization (IDT72241)
- 8,192 x 9-bit organization (IDT72251)
- 10 ns read/write cycle time (excluding the IDT72251)
- Read and Write Clocks can be independent
- Dual-Ported zero fall-through time architecture
- Empty and Full Flags signal FIFO status
- Programmable Almost-Empty and Almost-Full flags can be set to any depth
- Programmable Almost-Empty and Almost-Full flags default to Empty+7, and Full-7, respectively
- Output enable puts output data bus in high-impedance state
- Advanced submicron CMOS technology
- Available in the 32-pin plastic leaded chip carrier (PLCC)
- All devices, except the 72251, are available in the ceramic leadless chip carrier (LCC) and 32-pin Thin Quad Flat Pack (TQFP)
- For through-hole product please see the IDT72420/72200/72210/ 72220/72230/72240 data sheet
- Military product compliant to MIL-STD-883, Class B
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available (plastic packages only)

DESCRIPTION:

The IDT72421/72201/72211/72221/72231/72241/72251 SyncFIFO ${ }^{\text {TM }}$ are very high-speed, low-power First-In, First-Out (FIFO) memories with clocked read and write controls. These devices have a64, 256, 512, 1,024, $2,048,4,096$, and $8,192 \times 9$-bitmemory array, respectively. These FIFOs are applicable fora wide variety of databuffering needs such as graphics, local area networks and interprocessor communication.

These FIFOs have9-bitinput and output ports. The inputport is controlled by a free-running clock (WCLK), and two write enable pins (WEN1, WEN2). Datais written into the Synchronous FIFO on every rising clock edge when the write enable pins are asserted. The output port is controlled by another clock pin (RCLK) and two read enable pins ($\overline{\mathrm{REN} 1}, \overline{\mathrm{REN} 2}$). The Read Clock can be tied to the Write Clock for single clock operation or the two clocks can run asynchronous of one another for dual-clock operation. An output enable pin $(\overline{\mathrm{OE}})$ is provided on the read port for three-state control of the output.

The Synchronous FIFOs have two fixed flags, Empty ($\overline{\mathrm{EF}}$) and Full ($\overline{\mathrm{FF}}$). Two programmable flags, Almost-Empty ($\overline{\mathrm{PAE}}$) and Almost-Full ($\overline{\mathrm{PAF}}$), are provided for improved system control. The programmable flags default to Empty +7 and Full-7 for $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$, respectively. The programmable flag offsetloading is controlled by a simple state machine and is initiated by asserting the load pin ($\overline{\mathrm{LD}})$.

These FIFOs are fabricated using IDT's high-speed submicron CMOS technology. Military grade productis manufactured in compliance with the latest revision of MIL-STD-883, Class B.

FUNCTIONAL BLOCK DIAGRAM

OCTOBER 2000

PIN CONFIGURATION

1. The LCC is not available for the IDT72251 nor is it available for devices tested to the industrial temperature range.

PIN DESCRIPTIONS

Symbol	Name	I/0	Description
Do-D8	Datalnputs	1	Data inputs fora9-bit bus.
$\overline{\mathrm{R}}$ S	Reset	1	When $\overline{\mathrm{RS}}$ is setLOW, internal read and write pointers are set to the first location of the RAM array, $\overline{F F}$ and $\overline{\text { PAF }}$ go HIGH , and $\overline{\text { PAE }}$ and $\overline{E F}$ go LOW. A reset is required before an initial WRITE after power-up.
WCLK	WriteClock	1	Data is written into the FIFO on aLOW-to-HIGH transition of WCLK when the Write Enable(s) are asserted.
$\overline{\text { WEN1 }}$	Write Enable 1	I	If the FIFO is configured to have programmable flags, $\overline{\mathrm{WEN1}}$ is the only write enable pin. When $\overline{\mathrm{WEN1}}$ is LOW, data is written into the FIFO on every LOW-to-HIGH transition WCLK. If the FIFO is configured to have two write enables, $\overline{W E N 1}$ must be LOW and WEN2 must be HIGH to write data into the FIFO. Data will not be written into the FIFO ifthe FF is LOW.
WEN2/ $\overline{\mathrm{L}}$	Write Enable 2/ Load	1	The FIFO is configured at reset to have either two write enables or programmable flags. IfWEN2/LD is HIGH at reset, this pin operates as a second write enable. IfWEN2/LD is LOW at reset, this pin operates as a control to load and read the programmable flag offsets. If the FIFO is configured to have two write enables, $\overline{\text { WEN1 }}$ must be LOW and WEN2 must be HIGH to write data into the FIFO. Data will not be written into the FIFO if the FF is LOW. If the FIFO is configured to have programmable flags, WEN2/LD is held LOW to write or read the programmable flag offsets.
Q0-Q8	DataOutputs	0	Data outputs for a9-bitbus.
RCLK	Read Clock	1	Data is read from the FIFO on a LOW-to-HIGH transition of RCLK when $\overline{\text { REN } 1 ~ a n d ~} \overline{\text { REN2 }}$ are asserted.
REN1	Read Enable 1	1	When $\overline{\text { EEN1 }}$ and $\overline{\text { REN } 2}$ are LOW, data is read from the FIFO on every LOW-to-HIGH transition of RCLK. Data will not be read from the FIFO if the EF is LOW.
REN2	Read Enable 2	1	When $\overline{\text { EEN1 }}$ and $\overline{\text { REN } 2}$ are LOW, data is read from the FIFO on every LOW-to-HIGH transition of RCLK. Data will not be read from the FIFO if the EF is LOW.
$\overline{\mathrm{O}} \mathrm{E}$	OutputEnable	1	When $\overline{\mathrm{E}}$ is LOW, the data output bus is active. If $\overline{\mathrm{OE}}$ is HIGH, the output data bus will be in a high-impedance state.
$\overline{\mathrm{E}}$	Empty Flag	0	When EF is LOW, the FIFO is empty and further data reads from the output are inhibited. When $\overline{\mathrm{FF}}$ is HIGH, the FIFO is not empty. EF is synchronized to RCLK.
$\overline{\text { PA }} \overline{\mathrm{E}}$	Programmable Almost-EmptyFlag	0	When PAE is LOW, the FIFO is almost-empty based on the offset programmed into the FIFO. The default offset at resetis Empty +7 . $\overline{\text { PAE }}$ is synchronized to RCLK.
$\overline{\mathrm{P} \overline{\mathrm{A}}}$	Programmable Almost-Full Flag	0	When PAF is LOW, the FIFO is almost-full based on the offset programmed into the FIFO. The default offset at reset is Full-7. PAF is synchronized to WCLK.
$\overline{\text { FF }}$	Full Flag	0	When FF is LOW, the FIFO is full and further data writes into the input are inhibited. When FF is HIGH , the FIFO is not full. FF is synchronized to WCLK.
Vcc	Power		One +5 volt power supply pin.
GND	Ground		One 0 volt ground pin.

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Com'l \& Ind'I	Mil.	Unit
VTERM	TerminalVoltage withRespectto GND	-0.5 to +7.0	-0.5 to +7.0	V
TstG	Storage Temperature	-55 to +125	-65 to +135	${ }^{\circ} \mathrm{C}$
lout	DCOutput Current	-50 to +50	-50 to +50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit	
Vcc	Supply Voltage Com'\|/Ind'	Mil.	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V	
V/H	InputHigh Voltage Com'IIId"I	2.0	-	-	V	
VIH	InputHigh Voltage Military	2.2	-	-	V	
VIL	InputLowVoltage Com'I/Ind'IMil.	-	-	0.8	V	
TA	Operating Temperature Commercial	0	-	70	${ }^{\circ} \mathrm{C}$	
TA	Operating Temperature Industrial	-40	-	85	${ }^{\circ} \mathrm{C}$	
TA	Operating Temperature Military	-55	-	125	${ }^{\circ} \mathrm{C}$	

DC ELECTRICAL CHARACTERISTICS

(Commercial: $V c c=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Military: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

Symbol	Parameter	IDT72421IDT72201IDT72211IDT72221IDT72231ID772241Com'I and Ind'I ${ }^{(1)}$tcLK $=10,15,25 \mathrm{~ns}$			IDT72251 Com'l and Ind'I ${ }^{(1)}$ tcLK $=10,15,25 \mathrm{~ns}$			IDT72421IDT72201IDT72211IDT72221IDT72231IDT72241MilitarytcLK $=20,25,50 \mathrm{~ns}$			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
$\underline{\mathrm{lu}}{ }^{(2)}$	Input Leakage Current (Any Input)	-1	-	1	-1	-	1	-10	-	10	$\mu \mathrm{A}$
ILO ${ }^{(3)}$	OutputLeakage Current	-10	-	10	-10	-	10	-10	-	10	$\mu \mathrm{A}$
Vor	Output Logic "1" Voltage, Іон = -2mA	2.4	-	-	2.4	-	-	2.4	-	-	V
Vol	Output Logic "0" Voltage, Iol $=8 \mathrm{~mA}$	-	-	0.4	-	-	0.4	-	-	0.4	V
ICC1 ${ }^{(4,5,6)}$	Active Power Supply Current	-	-	35	-	-	50	-	-	40	mA
Icc2 ${ }^{(4,7)}$	Standby Current	-	-	5	-	-	5	-	-	5	mA

NOTES:

1. Industrial temperature range product for the 15 ns and the 25 ns speed grade is available as standard product.
2. Measurements with $0.4 \leq \mathrm{Vin} \leq \mathrm{Vcc}$.
3. $\overline{\mathrm{OE}} \geq \mathrm{V} \mathrm{IH}, 0.4 \leq$ Vout $\leq \mathrm{Vcc}$.
4. Tested with outputs open (lout $=0$).
5. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz .
6. Typical IcC1 $=1.7+0.7^{*} \mathrm{fs}+0.02^{*} L^{*} \iota_{s}$ (in mA).

These equations are valid under the following conditions:
$\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, fs $=$ WCLK frequency $=$ RCLK frequency (in MHz , using TTL levels), data switching at $\mathrm{f} / 2, \mathrm{CL}=$ capacitive load (in pF).
7. All Inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{GND}+0.2 \mathrm{~V}$, except RCLK and WCLK, which toggle at 20 MHz .

AC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Military: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

NOTES:

1. Pulse widths less than minimum values are not allowed.
2. Values guaranteed by design, not currently tested.

AC TEST CONDITIONS

In Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load	See Figure 1

CAPACITANCE $\left(\mathrm{Ta}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter	Conditions	Max.	Unit
$\mathrm{CIN}^{(2)}$	InputCapacitance	$\mathrm{VIN}_{\mathrm{I}}=0 \mathrm{~V}$	10	pF
$\mathrm{CouT}^{(1,2)}$	OutputCapacitance	Vout $=0 \mathrm{~V}$	10	pF

NOTES:

1. With output deselected $(\mathrm{OE} \geq \mathrm{V} / \mathrm{H})$.
2. Characterized values, not currently tested.
D.U.T.

or equivalent circuit
Figure 1. Output Load
*includesjig and scope capacitances

SIGNAL DESCRIPTIONS

INPUTS:

DATA IN (D0 - D8)

Data inputs for 9-bitwide data.

CONTROLS:

RESET (RS)

Reset is accomplished whenever the Reset(RS) inputis taken to a LOW state. During reset, both internal read and write pointers are set to the first location. A reset is required after power-up before a write operation can take place. The Full Flag(FF) and ProgrammableAlmost-Full flag(PAF) will be reset to HIGH after tRSF. The Empty Flag (EF) and Programmable Almost-Empty flag (PAE) will be resetto LOW aftertRSF. During reset, the output register is initialized toallzeros and the offsetregisters are initialized to theirdefaultvalues.

WRITE CLOCK (WCLK)

A write cycle is initiated on the LOW-to-HIGH transition of the WriteClock (WCLK). Datasetup and hold times mustbe metin respecttotheLOW-to-HIGH transition of WCLK. The Full Flag ($\overline{\mathrm{FF}}$) and Programmable Almost-Full flag ($\overline{\text { PAF }}$) are synchronized with respectto the LOW-to-HIGH transition ofWCLK.

The Write and Read Clocks can be asynchronous or coincident.

WRITE ENABLE 1 (WEN1)

Ifthe FIFO is configured for programmable flags, Write Enable $1(\overline{\mathrm{WEN}})$ is the onlyenable control pin. Inthis configuration, whenWrite Enable 1 (WEN1) is LOW, data can be loaded into the input register and RAM array on the LOW-to-HIGHtransition ofevery WriteClock (WCLK). Datais stored intheRAM array sequentially and independently of any ongoing read operation.

Inthis configuration, when Write Enable $1(\overline{\mathrm{WEN1}})$ isHIGH, the inputregister holds the previous dataand nonew datais allowed to be loaded into the register.

If the FIFO is configured to have two write enables, which allows for depth expansion, there are two enable control pins. See Write Enable 2 paragraph below for operation in this configuration.

To prevent data overflow, the Full Flag ($\overline{\mathrm{FF}}$) will goLOW, inhibiting further write operations. Upon the completion of a valid read cycle, the Full Flag ($\overline{\mathrm{FF}})$ will go HIGH aftertWFF, allowing a valid write to begin. Write Enable 1 (WEN1) is ignored when the FIFO is full.

READ CLOCK (RCLK)

Data can be read ontheoutputs on the LOW-to-HIGH transition ofthe Read Clock (RCLK). The Empty Flag ($\overline{\mathrm{EF}}$) and Programmable Almost-Empty flag ($\overline{\mathrm{PAE}}$) are synchronized with respect to the LOW-to-HIGH transition of RCLK.

The Write and Read Clocks can be asynchronous or coincident.

READ ENABLES ($\overline{\operatorname{REN} 1}, \overline{\text { REN2 }})$

When both Read Enables ($\overline{\operatorname{REN} 1}, \overline{\mathrm{REN} 2})$ are LOW, data is read from the RAM array to the output register on the LOW-to-HIGH transition of the Read Clock (RCLK).

WheneitherRead Enable ($\overline{\mathrm{REN1}}, \overline{\mathrm{REN2}})$ is HIGH, the output registerholds the previous data and no new data is allowed to be loaded into the register.

When all the data has been read from the FIFO, the Empty Flag ($\overline{\mathrm{EF}}$) will go LOW, inhibiting further read operations. Once a valid write operation has been accomplished, the Empty Flag ($\overline{\mathrm{EF}}$) will go HIGH after tREF and a valid read can begin. The Read Enables ($\overline{\operatorname{REN} 1}, \overline{\mathrm{REN} 2})$ are ignored whenthe FIFO isempty.

OUTPUTENABLE ($\overline{0 E}$)

When Output Enable ($\overline{\mathrm{OE}})$ is enabled (LOW), the parallel output buffers receive data from the output register. When Output Enable $(\overline{\mathrm{OE}})$ is disabled (HIGH), the Q output data bus is in a high-impedance state.

WRITE ENABLE 2/LOAD (WEN2/LD $)$

This is a dual-purpose pin. The FIFO is configured at Reset to have programmableflagsortohavetwo writeenables, whichallowsdepthexpansion. IfWrite Enable 2/Load(WEN2/LD $)$ is setHIGH at Reset ($\overline{\mathrm{RS}}=\mathrm{LOW}$), this pin operates as a second write enable pin.

If the FIFO is configured to have two write enables, when Write Enable ($\overline{\mathrm{WEN1}}$) is LOW and Write Enable 2/Load (WEN2/LD) is HIGH, data can be loaded into the input register and RAM array on the LOW-to-HIGH transition of every WriteClock(WCLK). Datais stored intheRAM array sequentially and independently of any ongoing read operation.

In this configuration, when Write Enable ($\overline{\mathrm{WEN} 1}$) is HIGH and/or Write Enable 2/Load (WEN2/(̄D) is LOW, the input register holds the previous data and no new data is allowed to be loaded into the register.

To prevent data overflow, the Full Flag ($\overline{\mathrm{FF}}$) will go LOW, inhibiting further write operations. Upon the completion of a valid read cycle, the Full Flag ($\overline{\mathrm{FF}}$) will go HIGH aftertWFF, allowing a valid write to begin. Write Enable 1 (WEN1) and Write Enable 2/Load (WEN2/LD) are ignored when the FIFO is full.

TheFIFO is configured to have programmable flags when the Write Enable 2/Load (WEN2/LD) is setLOW atReset($\overline{\mathrm{RS}}=\mathrm{LOW}$). The IDT72421/72201/ 72211/72221/72231/72241/72251 devices contain four 8-bitoffset registers which canbeloaded with data on the inputs, or read on the outputs. See Figure 3 for details of the size of the registers and the default values.

IftheFIFO is configured to have programmableflags when the Write Enable 1 ($\overline{\mathrm{WEN} 1}$) and Write Enable2/Load(WEN2/(̄D) are setLOW, dataonthe inputs Diswrittenintothe Empty (LeastSignificantBit) OffsetregisteronthefirstLOW-to-HIGHtransition oftheWriteClock(WCLK). DataiswrittenintotheEmpty (Most SignificantBit) Offsetregisteronthe secondLOW-to-HIGH transition oftheWrite Clock (WCLK), into the Full (Least Significant Bit) Offset register on the third transition, and into the Full (Most Significant Bit) Offset register on the fourth transition. ThefifthtransitionoftheWriteClock(WCLK)againwrites totheEmpty (LeastSignificantBit) Offsetregister.

However, writing all offsetregisters does nothave to occur atonetime. One or two offset registers can be written and then by bringing the Write Enable 2 / Load (WEN2/LD) pin HIGH, the FIFO is returned to normal read/write operation. WhentheWriteEnable2/Load(WEN2/LD) pinis setLOW, theWrite

$\overline{\mathrm{LD}}$	$\overline{\text { WEN1 }}$	WCLK	Selection
0	0	\square	Empty Offset(LSB) Empty Offset (MSB) Full Offset (LSB) Full Offset (MSB)
0	1	\square	No Operation
1	0	\square	Write Into FIFO
1	1	\square	No Operation

NOTE:

1. For the purposes of this table, WEN2 $=$ VIH.
2. The same selection sequence applies to reading from the registers. $\overline{\text { REN1 }}$ and $\overline{\text { REN2 }}$ are enabled and read is performed on the LOW-to-HIGH transition of RCLK.

Figure 2. Write Offset Register

Enable 1 ($\overline{\mathrm{WEN} 1}$) is LOW, the next offset register in sequence is written.
The contents ofthe offsetregisters canbe read on the output lines whenthe Write Enable 2/Load (WEN2/LD) pin is set LOW and both Read Enables ($\overline{\mathrm{REN1}}, \overline{\mathrm{REN} 2}$) are setLOW. Datacanbe readontheLOW-to-HIGHtransition of the Read Clock (RCLK).

A read and write should not be performed simultaneously to the offset registers.

Figure 3. Offset Register Location and Default Values

OUTPUTS:

FULL FLAG (FF)

The Full Flag (FF) will go LOW, inhibiting further write operation, when the device is full. If no reads are performed after Reset ($\overline{\mathrm{RS}}$), the Full Flag (獂) will go LOW after 64 writes for the IDT72421, 256 writes for the IDT72201,512 writes for the IDT72211, 1,024 writes for the IDT72221, 2,048 writes for the IDT72231,4,096 writes for the IDT72241, and 8,192 writes for the IDT72251.

The Full Flag ($(\mathrm{FF}$) is synchronized with respect to the LOW-to-HIGH transition oftheWrite Clock(WCLK).

EMPTY FLAG (EF)

The Empty Flag (EF) will go LOW, inhibiting further read operations, when the read pointer is equal to the write pointer, indicating the device is empty.

The Empty Flag ($\overline{\mathrm{EF}}$) is synchronized with respect to the LOW-to-HIGH transition of the Read Clock (RCLK).

PROGRAMMABLE ALMOST-FULL FLAG ($\overline{\text { PAF }}$)

The Programmable Almost-Fill flag ($\overline{\mathrm{PAF}}$) will go LOW when the FIFO reaches the almost-full condition. Ifno reads are performed afterReset $(\overline{\mathrm{RS}})$, the Programmable Almost-Fullflag($\overline{\mathrm{PAF}}$) will goLOW after (64-m) writes forthe IDT72421, (256-m) writes for the IDT72201, (512 -m) writes for the IDT72211,
(1,024-m) writes for the IDT72221, (2,048-m) writes for the IDT72231, (4,096$\mathrm{m})$ writes for the IDT72241, and (8,192 -m) writes for the IDT72251. The offset " m " is defined in the Full offsetregisters.

Ifthere is no Full offsetspecified, the Programmable Almost-Full flag($\overline{\mathrm{PAF}})$ will go LOW at Full-7 words.

The Programmable Almost-Full flag $(\overline{\mathrm{PAF}})$ is synchronized with respect to the LOW-to-HIGHtransition of the Write Clock (WCLK).

PROGRAMMABLEALMOST-EMPTYFLAG ($\overline{\text { PAE }}$)

The Programmable Almost-Empty flag(PAE) will go LOW when the read pointer is " $n+1$ " locations less than the write pointer. The offset "n" is defined in the Empty Offset registers. If no reads are performed after Reset the Programmable Almost-Empty flag ($\overline{\text { PAE }}$) will go HIGH after " $n+1$ " for the IDT72421/72201/72211/72221/72231/72241/72251.

Ifthere is no Empty offsetspecified, the Programmable Almost-Empty flag ($\overline{\text { PAE }) ~ w i l l ~ g o ~ L O W ~ a t ~ E m p t y ~}+7$ words.

The Programmable Almost-Empty flag ($\overline{\text { PAE }})$ is synchronized with respect to the LOW-to-HIGH transition of the Read Clock (RCLK).

DATA OUTPUTS (Q0 - Q8)

Data outputs for a 9-bit wide data.

TABLE 1. STATUS FLAGS

NUMBER OF WORDS IN FIFO			$\overline{F F}$	$\overline{\text { PAF }}$	$\overline{\mathrm{P}} \overline{\mathrm{E}}$	$\bar{E} \bar{F}$
IDT72421	IDT72201	IDT72211				
0	0	0	H	H	L	L
1 ton ${ }^{(1)}$	1 to ${ }^{(1)}$	1 ton ${ }^{(1)}$	H	H	L	H
$(\mathrm{n}+1)$ to (64-(m+1))	$(\mathrm{n}+1)$ to (256-($\mathrm{m}+1)$)	$(\mathrm{n}+1)$ to $(512-(\mathrm{m}+1)$)	H	H	H	H
$(64-m)^{(2)}$ to 63	(256-m) ${ }^{(2)}$ to 255	(512-m) ${ }^{(2)}$ to 511	H	L	H	H
64	256	512	L	L	H	H

NUMBER OF WORDS IN FIFO				FF	$\overline{\text { PAF }}$	$\overline{\text { PAE }}$	EF
IDT72221	IDT72231	IDT72241	IDT72251				
0	0	0	0	H	H	L	L
1 to $\mathrm{n}^{(1)}$	1 to ${ }^{(1)}$	1 to ${ }^{(1)}$	1 to ${ }^{(1)}$	H	H	L	H
($\mathrm{n}+1$) to($1,024-(\mathrm{m}+1)$)	$(\mathrm{n}+1) \mathrm{to}(2,048-(\mathrm{m}+1)$)	$(\mathrm{n}+1) \mathrm{to}(4,096-(\mathrm{m}+1)$)	$(\mathrm{n}+1)$ to (8,192-(m+1))	H	H	H	H
$(1,024-m)^{(2)}$ to 1,023	$(2,048-\mathrm{m})^{(2)}$ to 2,047	$(4,096-m)^{(2)}$ to 4,095	$(8,192-m)^{(2)}$ to8,191	H	L	H	H
1,024	2,048	4,096	8,192	L	L	H	H

NOTES:

1. $n=$ Empty Offset ($n=7$ default value)
2. $m=$ Full Offset $(m=7$ default value)

NOTES:

1. Holding WEN2/[D HIGH during reset will make the pin act as a second write enable pin. Holding WEN2/प्टD LOW during reset will make the pin act as a load enable for the programmable flag offset registers.
2. After reset, the outputs will be LOW if $\overline{\mathrm{OE}}=0$ and tri-state if $\overline{\mathrm{OE}}=1$.
3. The clocks (RCLK, WCLK) can be free-running during reset.

Figure 4. Reset Timing

$\overline{\text { REN1 }}$,
$\overline{\text { REN2 }}$

NOTE:

1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge for $\overline{\mathrm{FF}}$ to change during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskew1, then $\overline{F F}$ may not change state until the next WCLK edge.

Figure 5. Write Cycle Timing

WEN2 \qquad
NOTE:

1. tskEw is the minimum time between a rising WCLK edge and a rising RCLK edge for $\overline{E F}$ to change during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskew1, then EF may not change state until the next RCLK edge.

Figure 6. Read Cycle Timing

Figure 7. First Data Word Latency Timing

NOTE:

1. Only one of the two write enable inputs, $\overline{\mathrm{WEN1}}$ or WEN2, needs to go inactive to inhibit writes to the FIFO.

Figure 8. Full Flag Timing

NOTE:

1. When tsKEW $1 \geq$ minimum specification, trRL maximum $=$ tcLK + tSKEW1
tSKEW1 < minimum specification, tfRL maximum $=2$ tcLK + tskEW1 or tcLK+ tSKEW1
The Latency Timings apply only at the Empty Boundary ($\overline{\mathrm{EF}}=\mathrm{LOW}$).
Figure 9. Empty Flag Timing

NOTES:

1. $m=\overline{\mathrm{PAF}}$ offset
2. $64-\mathrm{m}$ words in FIFO for IDT72421, 256 - m words for IDT72201, 512 - m words for IDT72211, 1,024-m words for IDT72221, 2,048-m words for IDT72231, $4,096-\mathrm{m}$ words for IDT72241, and 8,192-m words for IDT72251.
3. tskEwz is the minimum time between a rising RCLK edge and a rising WCLK edge for $\overline{\text { PAF }}$ to change during that clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskewz, then PAF may not change state until the next WCLK rising edge.
4. If a write is performed on this rising edge of the Write Clock, there will be Full - $(m-1)$ words in the FIFO when PAF goes LOW.

Figure 10. Programmable Full Flag Timing

NOTES:

1. $n=\overline{\mathrm{PAE}}$ offset.
2. tSKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge for $\overline{\mathrm{PAE}}$ to change during that clock cycle. If the time between the rising edge of WCLK and the rising edge of RCLK is less than tsKEw2, then $\overline{\text { PAE }}$ may not change state until the next RCLK rising edge.
3. If a read is performed on this rising edge of the Read Clock, there will be Empty $+(n-1)$ words in the FIFO when PAE goes LOW.

Figure 11. Programmable Empty Flag Timing

Figure 12. Write Offset Registers Timing

Figure 13. Read Offset Registers Timing

OPERATING CONFIGURATIONS

SINGLE DEVICE CONFIGURATION - A single IDT72421/72201/72211/ 72221/72231/72241/72251 may be used when the application requirements are for $64 / 256 / 512 / 1,024 / 2,048 / 4,096 / 8,192$ words or less. When these FIFOs are in a SingleDeviceConfiguration, the Read Enable2 ($\overline{\mathrm{REN} 2}$) control input can be grounded (see Figure 14). In this configuration, the Write Enable 2/Load(WEN2/LD) pin is setLOW atResetso thatthe pin operates as a control to load and read the programmable flag offsets.

WIDTH EXPANSION CONFIGURATION - Word width may be increased simply by connecting the corresponding input controls signals of multiple devices. A composite flag should be created for each of the endpoint status flags ($\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}})$. The partial status flags $(\overline{\mathrm{AE}}$ and $\overline{\mathrm{AF}})$ can be detected from any one device. Figure 15 demonstrates a 18-bit word width by using two IDT72421/72201/72211/72221/72231/72241/72251s. Any word width can be attained by adding additional IDT72421/72201/72211/72221/72231/ 72241/72251s.

When these FIFOs are in a Width Expansion Configuration, the Read Enable $2(\overline{\mathrm{REN} 2})$ control input can be grounded (see Figure 15). In this
configuration, the Write Enable 2/Load(WEN2/LD) pin is setLOW at Resetso that the pinoperates as a control toload and read the programmableflag offsets.

DEPTH EXPANSION - The IDT72421/72201/72211/72221/72231/72241/ 72251 can be adapted to applications when the requirements are for greater than $64 / 256 / 512 / 1,024 / 2,048 / 4,096 / 8,192$ words. The existence of two enable pins on the read and write port allow depth expansion. The Write Enable 2/Load pin is used as a second write enable in a depth expansion configuration thus the Programmable flags are setto the defaultvalues. Depth expansion is possible by using one enable input for system control while the other enable input is controlled by expansion logic to direct the flow of data. A typical application would have the expansion logic alternate data access from one device to the next in a sequential manner. These devices operate in the Depth Expansion configuration when the following conditions are met:

1. The WEN2/ $\overline{\mathrm{L}}$ pin is held HIGH during Reset so that this pin operates a second Write Enable.
2. External logic is used to control the flow of data.

Please see the Application Note "DEPTH EXPANSION OF IDT'S SYNCHRONOUSFIFOs USING THERINGCOUNTERAPPROACH" for details ofthis configuration.

Figure 14. Block Diagram of Single $64 \times 9,256 \times 9,512 \times 9,1,024 \times 9,2,048 \times 9,4,096 \times 9,8,192 \times 9$ Synchronous FIFO

Figure 15. Block Diagram of $64 \times 18,256 \times 18,512 \times 18,1,024 \times 18,2,048 \times 18,4,096 \times 18,8,192 \times 18$
Synchronous FIFO Used in a Width Expansion Configuration

ORDERING INFORMATION

NOTES:

1. The LCC is not available for the IDT72251 nor is it available for devices tested to the industrial temperature range.

DATASHEET DOCUMENT HISTORY
10/03/2000 pgs. 2, 3, 4 and 14.

